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Using the method of matched asymptotic expansions, an expansion of the velo-
city potential for steady incompressible flow has been obtained to order et for
slender bodies of revolution at an angle of attack by representing the potential
due to the body as a superposition of potentials of sources and doublets distri-
buted along a segment of the axis inside the body excluding an interval near
each end of the body. Also, expansions of the coefficients of longitudinal virtual
mass and lateral virtual mass have been found. The pressure distributions over
an ellipsoid of revolution of thickness ratio ¢ = 0-3 at zero angle of attack and
at an angle of attack of 3° obtained by the present method are compared with
results obtained from the exact theory and that of Van Dyke. The virtual-mass
coefficients are also compared with those obtained from the exact theory and
are found to be in good agreement up to ¢ = 0-3.

1. Introduction

The method of matched asymptotic expansions has already been applied to
‘not-so-slender’ bodies of revolution at angles of attack in incompressible
potential flow. Lighthill (1948), Van Dyke (1951) and Broderick (1949) studied
the supersonic problem by regular perturbation methods. Van Dyke (1959) has
also given a second-order theory for incompressible and subsonic axisymmetric
flows. Ashley & Landahl (1965) obtained the expansion for the potential for
subsonic and supersonic axisymmetric flows to order ¢ and Cole (1968) found
the expansion to order e for the incompressible case using matched asymptotic
expansions. The object of the present paper is to develop an asymptotic expan-
sion for the solution of the Laplace equation for ‘not-so-slender’ bodies of revo-
lution at an angle of attack by representing the potential due to the body as a
superposition of potentials of sources and doublets distributed along a segment
of the axis inside the body excluding an interval near each end of the body. To
determine these intervals in which the source strength vanishes the procedure
given by Handelsman & Keller (1967) is used. To expand the integrals for the
potential the method given by Wang (1967) is followed. The expansion for the
velocity potential is obtained to order ¢*. The expansions for the virtual-
mass coefficients are obtained, following Munk (1934), to order ¢2. The pressure
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Vo

Ficure 1. Co-ordinate system.

distributions over an ellipsoid of thickness ratio € = 0-3 at zero angle of attack
and at an angle of attack of 3° obtained by the present method are compared
with values computed from the exact expression given by Matthews (1952) and
values computed using Van Dyke’s second-order theory without the addition of
eigensolutions. The virtual-mass coefficients are compared with those given in
Thwaites (1960).

2. Asymptotic expansion for ¢

We shall consider incompressible flow around a slender body of revolution
defined by r = e¢R(z) for small values of the thickness ratio €; the uniform free
stream is inclined from below at a small angle of attack o (figure 1). The full
problem for the velocity potential is

V2D = O, + @, +r 1D, +r 2Dy =0, (1)
D,/D, =eR'(x) for r=eR(x) (tangency condition), (2)
D =TV, cos(a)x+V,sin (a)rsin@ (upstream condition). (3)

The outer problem. The system of equations becomes
ViQP = 0, (4)
D0 = Uz + Wrsind (upstream condition), (5)

where @9 is the outer solution, U =V, cosx and W = ¥, sin «. We shall consider
an asymptotic expansion for the outer problem of the form

QO = By + €2Pyg + € 10g (€) gy + €*Pgp+ - - (6)
The inner problem. We introduce inner variables of the form
x=x 7=rle (7)
The system of equations becomes
Ok + 71 DL+ 720f, +62DL, = 0, (8)
Oi = 2R’ (x) DL at 7= R(z) (tangency condition). (9)
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We introduce an inner expansion of the form

= Poo+€P1g + €210g (€) Gy + €3y + €2 l0g (€) Py

+€3ag+€410g? (€) Pag + €t log (€) Py + %Py + - (10)
First outer approximation ¢y, Substituting (6) in (4) and (5), we see that
00 = Uz + Wrsiné. (11)

Introducing the inner variables and expanding for small €, we get

00 = Uz +€eW7sin6.
Therefore

1-term inner expansion of 1-term outer expansion = Uz.
First inner approvimation ¢y, Substituting (10) in (8) and (9), we get
Pooii + 7 Pos + T 20000 = 05 oz =0 at 7 = ER(z).
Matching with the outer solution requires
Boo = Ua. (12)
Second outer approximation @y Substitution of (6) in (4) and (5) gives

V3o = 0; ¢y =0 upstream.

We take the solution for ¢,, to be of the form

fz gz
Poo = — 47rf (@ 0 rz]% rsin f @ 0 rz]f dg, (13)

where f,, is the source intensity and g¢,, the doublet intensity, the definitions of
a and b being given in equations (A 2) in the appendix. Introducing the inner
variables and expanding for small ¢ as in the appendix, we get

1 7 .
Pao = — {—2108(6)f20—2108 2o+ 1a+€%log (€ )

d 7 —\ £
fzo[ ]——[0 Fy(x,0)—d, Fy(w, 1)]+¢ 5 log (M) fio
2 72
—6225 5 (2fa0+150) + }

1
+Ersm0{ 920 _ elog (€) gl — 6y F log 7
7
+€W(920+k20)+~-}- (14)

Therefore
2-term inner expansion of 2-term outer expansion

= Uz +eWrsin @ + egyysin (0)/2n7F.

Second inner approximation ¢y,

P+ 1y + T 2Props = 0 Pus =0 at 7= R().
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We take ¢,y = [A1y7 + By,/F] sin 0. The boundary condition implies that
By = 440 B(x).

The 2-term inner expansion written in outer variables is

Uz + Aqyrsin 0 + €24,y R?(x) sin (0)[r.

Expanding for small ¢, we obtain for the 2-term outer expansion of the 2-term

inner expansion

Ux+ Ayyrsin 0 + 624 1, R2(x) sin (0) [r.
Rewritten in inner variables, this becomes

Uz +-e[AoF 4 A 1o R2(x)[F]sin 6.
Now the matching condition

2-term outer expansion of 2-term inner expansion = 2-term
inner expansion of 2-term outer expansion
gives Ux+ e[dg7 + A1 R¥x)[F]sin 0 = Uz + e[ WF + gyo/2a7] sin 0,
so that A=W, gyx) =274, R¥x) = 20 WR(x).

Third inner approxvimation ¢y,
Porzi + 7 o + T 2P0 = 05 Gz =0 at T = R(x).
The matching condition
2-term outer expansion of 3-term inner expansion = 3-term
inner expansion of 2-term outer expansion
gives Bor = Ay () = foo(@)[2m.

Fourth inner approximation ¢y,

Booii + 7 Pogi +7 2 Paogp = — Pooes = 0
Pagr = B'(®) doo. = UR'(x) at 7 =Rz

Therefore o9 = URR'log 7+ Byy().

The matching condition

).

2-term outer expansion of 4-term inner expansion = 4-term

inner expansion of 2-term outer expansion

gives foo/2m = URR/,

Bzoz”‘g [f2010g4x 1—2a) f fzo—lx—?li—)dg].
Third outer approximation ¢

Vi =0; ¢4y =0 upstream,
Therefore we take

_ Ja1(8) 95(&)
Pu f[x £+ ”mef (g™

(16)

(7

(18)

(19)
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Rewriting this in inner variables and expanding for small ¢, we obtain

1 . 1. (2
Ga1 = _E{‘“ 2log (€) fn—21log (7) fu +1la + ...}+4—7-Tsm 0:%4_1“‘ } (20)
Fourth outer approximation ¢,

Vg4 = 0; ¢y =0 upstream.
Therefore we take

- J3o(€) 9aol£)
Pao = 47rf [——(x 20 r2]‘%d§ rsin f————————[(x 0 T d§. (21)

Rewriting in inner variables and expanding for small €, we get

1 _ 1. 2
Pao = “Z;T{“ﬂog (€) fao— 210g (7) fao + Lo+ ---}+j§75m0:‘z%)+ } (22)

Fifth inner approximation ¢y
Garr +7 Par + 7 Pygp = 05 Pair =0 at 7 = R().
We take a1 = [Ay7+ By [Flsing, By, = Ay R2. (23)
The matching condition
3-term outer expansion of 5-term inner expansion = 5-term

inner expansion of 3-term outer expansion

gives Agy = —ggofdm, gy =2nBgy = —2nWRYRR').
Siath inner approximation gy
1 JooSin g
¢30rr+ ¢30r+ 5 o000 = = Prozz = — 22;;)7",
- — , oo SIN 0 _
¢30§=R¢101=R§27‘:“2_7T‘ at 7=R.

We write { = 7e?. Therefore a particular solution for ¢, is seen to be

P = (—gho/16mi) [{og £~ Llog £].
Hence we take @,, to be of the form

sin 0

Pao = — 92" 2. [{log £~ Clog {1 -1 "’2" L. [{log £ Llog {1+ Ay sin 0+ By ——

where the second term is added to make ¢, single valued and to match with the
Flog7 term of the outer solution. 4,, and By, are determined by matching and
the boundary condition

oo = rlog (F)sin @ + Ay, Fsin 6+ By, — s1n0

(24)
Thus Agy = (8m) "2 dE[gqe + kgl [da?

Ga0 _ _ pa QJ R’gzo
and 27T—B30—R [A (1+lo R)— Fray ]
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Seventh inner approximation @,

Pugri + T Pusz + T2 Puggp = 05 Puis = 0 at 7= R(z).
Matching with the outer solution requires

Paz = fu(@)/27. (25)
Eighth inner approximation ¢,y
Paiir +T Pz + T P19 = — Parae = — ol 27,
Pazi = B' o1y = B'fpf2m at 7= R(x).
Therefore B = fzo Q’ = 20 72,
We see that by = (—f’2’0/87r 72+ Ay log 7+ By,

where A4, = (R/4m){2R'f},+ Rf5,} from the boundary condition, and

Ju=21dy, By = —(4m) Uy +[fyf2n
from matching.

Ninth inner approximation @,

R 1 — f
Pao™T += Pagi+ = Paoss = — Paoza = = logr By,
7 7

Pagr = R’azm: = R'J;z?‘:logR‘i‘Béo at 7= R(x).

Thus T = —I2 [(Zlogt— (T +Ll0g - T~ BT

= f207«210gr+16 d 2( f20+l20

Therefore we take Gap = OB+ Aglog7 + By,.
The boundary condition gives

44 =10 R I0g R+ RR By 413 Rrlog Rty B2+ 4B, B2,
Matching gives Jao = 2m A4,

fZO 01 1 _i_ _
Bao = 47r+167r =412 | F1en e Felw, 0) = dy F(, 1)].

Thus the inner expansion has been determined to order €% The pressure
coefficient C,, over the body is given by

= (p_pco) %Vgo = 1"'q2/VEo’
where

o oira (Lo s (L o)
7 = (%) +(g®;) +(€—F e)

= (Bon + 7 2B309) + 26005 Pr0s + 262108 €[ Poo Parz + 72109 Paro)
+ €2[2600; Paoz + Bl0s + o7 + 27 2105 Baos] +26% 108 €[ Boor Pa1o + P10z Para)
+26%[Booz Paoz + Proz Paow + Poor Paor] + €2 1082 (2B g0, Paos + Phrz + 7 2P315]
+ 264108 €[ G0z Pare + Pr0z Par + Parx Paow + Pecr Pars + 7 2P310 Paoe)
+ €426 00, Paoe + 2P100 Paow + Phos + 2P205 Pags + Phor +7 P3es] With 7 = R(z).
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3. Virtual-mass coefficients
To determine the virtual mass the method given by Munk (1934) is followed.

Coefficient of longitudinal virtual mass
The perturbation potential far from the body is given by

L UL )dg
[w—gp+r

where F(&,€) = e2fyy(E) +€tloge f41 +etfyo(E) +
When ¢ is expanded for large o = [2%+72]¢, we get

¢~-—f F(E,e) [1+ g]dg

4w

471 w3

o L
b
since f f(&,€)d& = total source strength = 0 for a closed body.
a

This is the far-field potential for a doublet of strength

1 [
4| deadE = o
Then the longitudinal virtual-mass coefficient K, is given by
pTK, = dmpp,|U - pr,
where 7 is the volume of the body and p its density. It can be shown that

Iy . £F £, d§ 1 d1] 20 1J 20 ’
where fzo gf 20

Coefficient of lateral virtual mass
Here the perturbation potential far from the body can be written as

¢ —-4—w3 g(£ €)dg,
where g(£, €) = €2g0(8) + e410g( ) 9 (6) +€*940(E) +

Hence the lateral virtual-mass coefficient K, is given by

prKy = dmpp,|W —pr,

where Ho(€) =;11—f g(§, €) dg.

It can be shown that
1 (1
l6) = 45 [ o€ €1

42 FLM 70
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Fioure 2. C, for an ellipsoid of revolution of thickness ratio ¢ = 0-3; ¢ = 0.
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Ficure 3. C, for an ellipsoid of revolution of thickness ratio ¢ = 0-3; & = 3°.
(@) 0 = 0. (b) 0 = . Curves as in figure 2.

4, Conclusion

It can be seen that the expansions for the velocity potential obtained by the
present method for the paraboloid and ellipsoid coincide with the expansions
obtained by Van Dyke (1959) when the eigensolutions are added. It is observed
that the present technique provides a solution for the pressure distribution valid
over a major portion of the surface for bodies of revolution with a thickness
ratio of up to 309, in axisymmetric flows. The pressure distributions for the
case of the ellipsoid have been calculated without incorporating any nose or
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K, K,

f A A r A —

Present Thwaites Present Thwaites
€ results (1960) results (1960)
0 0-0000 0:0000 1-0000 1-0000
0-1 0-02 0-0207 0-9601 0-9602
02 0-0521 0-0591 0-8958 0-8943
03 0-0807 0-1054 0-8385 0-8259

TaB1E 1. Coefficients of virtual mass for spheroids

tail corrections. The solution may be improved by using a local solution along
the lines of Cole (1968). The calculations were stopped at x/c = 0-1 since the
expansions are not valid for zjc = O(e?). In figures 2 and 3 the pressure
distributions over an ellipsoid of revolution whose meridian section is defined by

R(z) = e[lx(1—2)T}, €=03,
are compared with exact results obtained from Matthews (1952) and with values
calculated from Van Dyke (1951, 1959) without adding the eigensolutions. In
table 1, virtual-mass coefficients for ellipsoids of different thickness ratios are
compared with those obtained from the exact solution. It is seen that the ex-

pansion for the lateral virtual-mass coefficient is more accurate than that for
the longitudinal virtual-mass coefficient.

The authors would like to thank the referees for important suggestions for
improving the paper.

Appendix. Expansion of ¢ for small ¢

© (n)
Let Rx) = Sx) = X C,a, where C, = 5 nfO)’
. ' (A1)
®© S®(1)
and S)= ¥ d,(1—=x)*, where d,=(—1)" it
n=1 :
Let ad) = 3 a,8" b)) =1— 3 b 8", where &= ek (A 2)
n=1 n=1
b(8)
Consider = _if _-M_l . (A 3)
4 J o) [(x—E)2 +r2]%

Then we can define a function ¢ such that
Vo= —10, Y, =1,

__ 1 _(=-8)fE)
and =4 a[(x—g)2+r2]%d§' (A 97

+ For a closed body the total source strength

b
f F(E ¢)df = 0, where F(§ €) = efy(£)+ €' log (¢) ful€) + € u(E) + ...

This condition is used in deriving (A 4).

42-2
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Now we can write

V=g fOUa—gr e

21} r2
- g | 1@ [EEE R Brog a8+ o+

Introducing the inner variable we write
¥ =—(m L+ 1L}
where L =g [ @) @— D@ Er+ondE

I = %é%faf(;’) log {(z — &) +[(x —£)* + 6P} dE.

When £ = a, in the integrand of I, [(x —a)? +68(x)]* becomes singular at x = 0,
when expanded in terms of 8. To make the expansion regular to the order con-
sidered we have to choose @, = }C|. In a similar manner it can be shown that

b, = }d,.
2 r— 252
Now I, = %51—2{1&% O -t [1 +%(L_’§—)2+] dg
i [0 €2 1+ T ]
- ["r@ e+ [Cr@a+ Fre (45)
a b

Proceeding in a similar manner it can be shown that

I, = —é—{Zlog2 2loge—210gr+ f f(&)sgn (z—£&)log |z — §|d§} (A6)

The conditions ¥, = —r¢, and ¥, = r$, imply that

§ =~ {2l s @)+ f:f@ sn (o~ &) log o —£] d&

e, 2 &, . ePdd
(A7)
Now the potentials due to the doublets can be expanded as follows:
b i b _
L ng [ B Lm0 (PeO@-BE
T el G o (g

It can be seen that the integral in (A 8) is of the same form as the integral in
(A 4).
It can be shown that

T =t
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We write log [(z—a) (b—x)] as logx—afr+...+log(1—2) - (1-b)[(1—z)+....
Since @ = a,€? = }c,e>and b = 1 —b,e® = 1 — Ld,€® we get
€?

log(z—a)(d—2z) = loga(l — x)—z [%+1L-_lx]

Now
of @ -1 > () — ()
fa P £I la - f P dg*fb %

[Ho=f8g . [" [E) Jg‘g [F (2, E)], = Flo2) = F(2, 0,69

a r— g a.€? z—

= F(x,x) - F(x,0) —a,6F(x, 0)+
f %)~ (E) df—a €2F(.’L 0)+

X —

where F(x,§) f i x;

Similarly f £ 92 ) gg = f f@) J;(g dE + b, 2 Fy(a, 1) +

Therefore

b 1
faf(Tx A ) gt = ff d§+i-€2[d1Fg(x,1)~01F5(“”0)]+

For convenience we write

1
l = flog [4x(l —x)] — ff|x £ £,
k=glog[4x(1—x)]—f0—|7;——g—lg)d§.
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