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Using the method of matched asymptotic expansions, an expansion of the velo- 
city potential for steady incompressible flow has been obtained to order e4 for 
slender bodies of revolution a t  an angle of attack by representing the potential 
due to the body as a superposition of potentials of sources and doublets distri- 
buted along a segment of the axis inside the body excluding an interval near 
each end of the body. Also, expansions of the coefficients of longitudinal virtual 
mass and lateral virtual mass have been found. The pressure distributions over 
an ellipsoid of revolution of thickness ratio c = 0.3 at zero angle of attack and 
at  an angle of attack of 3” obtained by the present method are compared m7it.h 
results obtained from the exact theory and that of Van Dyke. The virtual-mass 
coefficients are also compared with those obtained from the exact theory and 
are found to be in good agreement up to e = 0.3. 

1. Introduction 
The method of matched asymptotic expansions has already been applied to 

‘not-so-slender ’ bodies of revolution at  angles of attack in incompressible 
potentiaI flow. Lighthill (1948), Van Dyke (1951) and Broderick (1949) studied 
the supersonic problem by regular perturbation methods. Van Dyke (1 959) has 
also given a second-order theory for incompressible and subsonic axisymmetric 
flows. Ashley & Landahl (1965) obtained the expansion for the potential for 
subsonic and supersonic axisymmetric flows to order e2 and Cole (1968) found 
the expansion to order e4 for the incompressible case using matched asymptotic 
expansions. The object of the present paper is to develop an asymptotic expan- 
sion for the solution of the Laplace equation for ‘not-so-slender’ bodies of revo- 
lution at  an angle of attack by representing the potential due to the body as a 
superposition of potentials of sources and doublets distributed along a segment 
of the axis inside the body excluding an interval near each end of the body. To 
determine these intervals in which the source strength vanishes the procedure 
given by Handelsman & Keller (1967) is used. To expand the integrals for the 
potential the method given by N’ang (1967) is followed. The expansion for the 
velocity potential is obtained to  order e4. The expansions for the virtual- 
mass coefficients are obtained, following Munk (1934), to order c2. The pressure 
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FIGURE 1. Co-ordinate system. 

distributions over an ellipsoid of thickness ratio E = 0.3 at zero angle of attack 
and at an angle of attack of 3" obtained by the present method are compared 
with values computed from the exact expression given by Matthews (1952) and 
values computed using Van Dyke's second-order theory without the addition of 
eigensolutions. The virtual-mass coefficients are compared with those given in 
Thwaites (1960). 

2. Asymptotic expansion for CP 
We shall consider incompressible flow around a slender body of revolution 

defined by r = eR(x) for small values of the thickness ratio e ;  the uniform free 
stream is inclined from below at a small angle of attack a (figure 1) .  The full 
problem for the velocity potential is 

V2@ = QZZ + (1)  

@),/@2 = &(x) for r = eR(x) (tangency condition), (2) 
CP = V, cos (a) x + V, sin (a) r sin 19 (upstream condition). (3) 

VWO = 0, (4) 

cDo = Ux + Wr sin 8 (upstream condition), (5) 

+ r-l@,. + r-2@,, = 0,  

The outer problem. The system of equations becomes 

where CPO is the outer solution, U = V, cos a and W = V, sin a. We shall consider 
an asymptotic expansion for the outer problem of the form 

= $00 -k €'$20 + e4 log ( e )  $41 f e4$4o + . . . (6) 

x = x, r = r/e. (7) 

(8) 

@; = $R'(x) @: at ? = R(x)  (tangency condition). (9) 

The inner problem. We introduce inner variables of the form 

The system of equations becomes 

@$ ++a< + F-2Q.i 8, + €2aj& = 0, 
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We introduce an inner expansion of the form 

Q’ = $00 + ~ $ 1 0  +e2 log ( 8 )  $21 + ~ ‘ $ 2 0  + €3 log (8)  $31 

+ e3$30 -k 8 log2 ( 6 )  $42 + E4 log ( E )  $41 + E4$p0 + . . (10) 

q500 = Ux+ Wrsin0. (11) 

First outer approximation q500. Substituting (6) in (4) and (5), we see that 

Introducing the inner variables and expanding for small E ,  we get 

Therefore 
q500 = U x  + E  Wrsin 0. 

l-term inner expansion of l-term outer expansion = Ux.  

First inner approximation $oo. Substituting (10) in (8) and (9)’ we get 

; d o ~ + ~ - ~ $ o ~ + ~ - 2 $ o o s s  = 0 ;  $oo7 = o at T = R(x) .  

Matching with the outer solution requires 
- 
fiOO = u x .  (12) 

Xecond outer approximation q520. Substitution of (6) in (4) and (5) gives 

V2$,, = 0;  q520 = 0 upstream. 

We take the solution for $20 to be o f  the form 

where f i0  is the source intensity and g,, the doublet intensity, the definitions of 
a and b being given in equations (A 2) in the appendix. Introducing the inner 
variables and expanding for small e as in the appendix, we get 

d €2 72 
-,f20[y e2 “+L] l - x  -- 4 [C,F;(x,O)-d,F& 1)]+€2~10g(F)f;0 

- E log (e) gioT - €gioT log F 

Therefore 
2-term inner expansion of %term outer expansion 

= U x  + E WF sin 0 + egg,, sin (0)/2nF. 

Second inner approximation $lo 
- 
#lOG + ~ - 1 $ ~ ~ ~  + ~ - 2 $ ~ ~ ~ ~  = 0;  $lor = o a t  F = R(x ) .  
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We take 
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= [Alo? +B1,/?] sin 6'. The boundary condition implies that 

B,, = Al0R2(x) .  

The %term inner expansion written in outer variables is 

U x  +Alor sin 6' + GAl0R2(x) sin (O)/r. 

Expanding for small 8,  we obtain for the 2-term outer expansion of the 2-term 

Ux+A1,rsin 6'+s2A,,R2(x) sin (6')/r. inner expansion 

Rewritten in inner variables, this becomes 

U X + E [ A , ~ F + A , , ~ ~ ( X ) / ~ ]  sin8. 

Now the matching condition 

2-term outer expansion of 2-term inner expansion = 2-term 

inner expansion of 2-term outer expansion 

Ux + €[Alo? +AlOR2(x)/F] sin 6' = U x  + e[ Wr + g,,/ZnF] sin 19, gives 

so that A,, = W ,  gz0(x)  = 277AloR2(~) = 27~W'R~(x). 

Th,ird inner approximution $21 

- 
q521?F +?-1$21F+F-2$2100 = 0 ;  $21r = 0 at F = R(x ) .  

The matching condition 

2-term outer expansion of 3-term inner expansion = 3-term 

inner expansion of 2-term outer expansion 
- 

gives 4 2 1  = A21(x) = fio(x)/2n* 

$2OFF + ?-l420+ + F-2i5200/3 = - 4oozz = 0, 

Pourth inner approximation q520 
- - - 

- 
$20F = R ' ( X ) $ ~ ~ ~  = UR'(x)  at ? = R(z). 

- 
Therefore 
The matching condition 

q520 = URR' log T + B,,(x). 

2-term outer expansion of 4-term inner expansion = 4-term 

inner expansion of 2-term outer expansion 

gives f2,/2j.r = URR',  

Third outer approximation #,, 
V2$,, = 0 ;  $41 = 0 upstream. 

Therefore we take 
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Rewriting this in inner variables and expanding for small 8, we obtain 

1 I 
477. 4n 

= --{ - 2 log ( E )  f4]- Slog (?)f4,+ 1,, + . . .>+- sin8 

Fourth outer approximation $40 

V2q54, = 0; $,, = 0 upstream. 
Therefore we take 

Rewriting in inner variables and expanding for small E ,  we get 

r:: ) 1 1 
477 4n 

#40 = --{- 21og(~)f,,-21og(~)f~,+Z~,+ ...)+- sin8 :+ ... . (22) 

Fifth inner approximation 

$ 31rr _ _  +r-l$=+ - +F2$3100 = 0; gZl+ = 0 at r = R(x). 

We take $,, = [A,, 5 + B,,/F] sin 0, B, = A31R2. (23) 
- 

The matching condition 

3-term outer expansion of 5-term inner expansion = 5-term 

inner expansion of 3-term outer expansion 

gives A, = - g’&/4n, g41 = 2nB31 = - 2n WR2(RR’)’. 

Sixth inner approximation $30 

We write 5 = rei0. Therefore a particular solution for &, is seen to be 
- 
#&$) = ( -gio/i6ni) [clog c- clog<]. 

Hence we take $,, to be of the form 

- 9;o sin 8 
30 - 16ni 1677% r ’  

where the second term is added to make q5,, single valued and to match with the 
rlogp term of the outer solution. A,, and B,, are determined by matching and 
the boundary condition 

- sin 8 #,,, = - G! ?log (5) sin 8 +A,,? sin 8 +B,, - . 

Q ’’0 [clog <- clog 51 - -. [clog <- clog 51 + A ~ ~ ?  sin B + B,, : 

(24) 4n r 

Thus A30 = (8n)-l d2[g20 + k,o]/dx2 

and 
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Xeventh inner approximation $42 

Matching with the outer solution requires 

Eighth inner approximation $41 

- $ 42Tr _-  + r-1$42; - + P2 $42ee = 0; $42; = 0 a t  ?; = R(x) .  

- 
$42 =f41(x)/2n'  (25) 

- 
$ 41rr --+F-l$ 41r+r-2$4188 - = -$21xx = - f i O / 2 n ,  
- 
#41; = R'$21x = RyiO/27l at F = R(x). 

-@I = -& (g = -&,2. 
$41 877 877 

Therefore 
- 

We see that $441 = ( - fio/8n) T2 + A 4 1  log ?; + B 4 1 ,  

where All = (R/477) {2R'fi0 + Rfi,} from the boundary condition, and 

from matching. 
f41 = 2 n A 4 , ,  B 4 ,  = - (477)- "41 +f401sn 

Ninth inner approximation $40 
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3. Virtual-mass coefficients 
To determine the virtual mass the method given by Munk (1934) is followed. 

CoefJicient of longitudinal virtual mass 
The perturbation potential far from the body is given by 

since j; f ( 6 , ~ )  dg = total source strength = 0 for a closed body. 

This is the far-field potential for a doublet of strength 

Then the longitudinal virtual-mass coefficient K,  is given by 

prK, = 4npp,/U - PT,  

where r is the volume of the body and p its density. It can be shown that 

1 . 1  
PI(€) = -G( f 0 t ; ~ ~ t ; , e ) d t ; -  ~ [ d ~ 2 0 ( 1 )  + C , ~ ~ O ( O ) I ] ,  

where.&o(E) = EfZO(0. 

Coeficient of lateral virtual maSs 

Here the perturbation potential far from the body can be written as 

where 

It can be shown that 

42 F L M  70 
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FIGURE 2. C, for an ellipsoid of revolution of thickness ratio E = 0.3; a = 0. 
---, present results; --- , exact results; - - - -, Van Dyke. 
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FIGURE 3. C, for an ellipsoid of revolution of thickness ratio E = 0.3; a = 3". 
(a) 0 = 0. ( b )  0 = +r. Curves as in figure 2. 

4. Conclusion 
It can be seen that the expansions for the velocity potential obtained by the 

present method for the paraboloid and ellipsoid coincide with the expansions 
obtained by Van Dyke (1959) when the eigensolutions are added. It is observed 
that the present technique provides a solution for the pressure distribution valid 
over a major portion of the surface for bodies of revolution with a thickness 
ratio of up to 30% in axisymmetric flows. The pressure distributions for the 
case of the ellipsoid have been calculated without incorpomting any nose or 
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K ,  - 
Present Thwaites 

€ results (1 960) 

0 0~0000 0~0000 
0.1 0.02 0.0207 
0.2 0.0521 0.0591 
0.3 0.0807 0.1054 

K2 - 
Present Thwaites 
results (1960) 

1.0000 1.0000 
0.9601 0.9602 
0.8958 0-8943 
0.8385 0.8259 

TABLE 1. Coefficients of virtual mass for spheroids 

tail corrections. The solution may be improved by using a local solution along 
the lines of Cole (1968). The calculations were stopped a t  x/c = 0.1 since the 
expansions are not valid for x/c = O(e2). In  figures 2 and 3 the pressure 
distributions over an ellipsoid of revolution whose meridian section is defined by 

R(x) = e [ ~ (  1 -%)I*, 8 = 0-3, 

are compared with exact results obtained from Matthews (1952) and with values 
calculated from Van Dyke (1951, 1959) without adding the eigensolutions. In  
table 1 virtual-mass coefficients for ellipsoids of different thickness ratios are 
compared with those obtained from the exact solution. It is seen that the ex- 
pansion for the lateral virtual-mass coefficient is more accurate than that for 
the longitudinal virtual-mass coefficient. 

The authors would like to thank the referees for important suggestions for 
improving the paper. 

Appendix. Expansion of 6 for small e 
m Sn) (  0) 

m x y  1 ) 

Let B2(x) = S(x)  = Cnxn, where Cn = - 
n=l n! ' 

S(x)  = 2 d,(l - x ) ~ ,  where d, = ( - i ) n T .  and 
n = l  

m m 

Let a(6) = C anSn., b(6) = 1- 2 b,@, where 6 = @. (A 2 )  
n=l  n = l  

Consider 

Then we can define a function @ such that 

@x = -r6v $-r = r#x 

and 

t For a closed body the total source strength 

(A 4) t  

This condition is used in deriving (A 4). 
42-2 
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Now we can write 

P. Sivakrishna Prasad and N .  R. Subramanian 

Introducing the inner variable we write 

II. = - (4n9-1 {I1 -I- 12), 

where 

When E = a, in the integrand of 11, [(x - a)2 + 8S(x)]4 becomes singular a t  x = 0, 
when expanded in terms of S. To make the expansion regular to the order con- 
sidered we have to choose a1 = &,. In  a similar manner it can be shown that 
b, = i d l .  

Proceeding in a similar manner it can be shown t,ha,t 

I2 = € 9 2  ~ ( z l o g 2 - 2 1 0 g ~ - 2 1 0 g F + - / a f ( [ ) s g n ( x - ~ ) l o g / x - ~ /  d2 d o .  (A6)  
ax2 

The conditions $, = - r$r and $r = r$" imply that 

(A 7) 
Now the potentials due to the doublets can be expanded as follows: 

It can be seen that the integral in (A 8) is of the same form as the integral in 
(A 4). 

It can be shown that 
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We write log [ (x-a)  (b  -x)] as logx- a/x + ... +log (1 -2) - ( 1  - b ) / ( l - x )  + ... . 
Sincea =ale2  =&,e2andb = 1-bls2 = 1-$dle2weget 

Now 

= P(x, x) - F(x, 0) - als2Pt(x, 0) + . . . 

where 

For convenience we write 
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